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Abstract

While we are capable of modeling the shape, e.g. face, arms, etc. of humanoid robots in a nearly natural or human-
like way, it is much more diɺcult to generate human-like facial or body movements and human-like behavior like e.g.
speaking and co-speech gesturing. In this paper it will be argued for a developmental robotics approach for learning
to speak. On the basis of current literature a blueprint of a brain model will be outlined for this kind of robots and
preliminary scenarios for knowledge acquisition will be described. Furthermore it will be illustrated that natural speech
acquisition mainly results from learning during face-to-face communication and it will be argued that learning to speak
should be based on human-robot face-to-face communication. Here the human acts like a caretaker or teacher and
the robot acts like a speech-acquiring toddler. This is a fruitful basic scenario not only for learning to speak, but also
for learning to communicate in general, including to produce co-verbal manual gestures and to produce co-verbal
facial expressions.

Keywords

developmental robotics · humanoid robotics · conversational agents · face-to-face-communication · speech · speech acquisition ·
speech production · speech perception

1. Introduction

While humanoid face-to-face communication robots are currently un-
der development in many labs and while the body structure of these
robots is already very human-like – or at least human-like enough to be
accepted and perceived as an artificial human being by human com-
munication partners – the control principles of these robots are not. At
present, rule-based artificial intelligence approaches are mainly used to
control cognitive processes as well as sensory and motor processes
in face-to-face communication systems. Rule-based approaches ba-
sically do not include learning processes. But humans acquire their
knowledge for accomplishing communication processes – as well as
other behavioral processes – on the entire amount of interactions with
the environment, i.e. (i) on the entire set of environmental impressions
including the actions of communication partners they perceived during
their lifetime and (ii) on the entire set of all bodily actions and reactions
(e.g. manual, facial, and speech actions) they produce during their life-
time (Tomasello 2000, Lungarella et al. 2003, Kuhl 2004, Kuhl 2007,
Asada et al. 2009).

In this paper it will be argued that control module (i.e. the “brain model”)
and plant (i.e. the “body” including abstractions of arms, hands, specific
parts of the face, and speech organs) should be divided in a way that
the plant can directly be modeled with respect to a human archetype
(i.e. genetically based knowledge), while the knowledge – which
must be “uploaded” to the control module or brain model (i.e. epige-
netically based knowledge) – has to be learned or acquired from

∗E-mail: bkroeger@ukaachen.de

a huge training set of human-robot interactions in a comparable way
as humans themselves acquire their behavioral knowledge (cf. Weng
et al. 2001, Prince and Demiris 2003, Weng 2004). In contrast to hu-
mans this complex process of knowledge acquisition needs to be done
only for one robot exemplar and the acquired knowledge then can be
simply “uploaded” to other robots, if they are intended to be used in
comparable communication scenarios.

After discussing the importance of the facial, the manual, as well as
the vocal tract domain in face-to-face communication (chapter 2) and
after discussing basic principles for controlling a face-to-face interactive
humanoid robot (chapter 3) the state of the art concerning humanoid
communicative robots will be outlined (chapter 4). Thereafter, on the
basis of current literature, a feasible basic architecture (i.e. a blueprint)
for the control module of a humanoid robot specialized in face-to-face
speech communication will be outlined (chapter 5) and subsequently a
hypothetical basic training scenario will be described for word learning
(chapter 6).

2. The domains of face-to-face communi-
cation

If we assume two persons which are communicating with each other
face-to-face, the basic tasks are (i) to perceive and comprehend com-
municative actions produced by the other and (ii) to react on these
actions, i.e. to produce adequate communicative actions for contin-
uing the communication process with respect to the communicative
goals (i.e. intentions) of each partner (e.g. Vilhjálmsson 2009). Com-
municative actions can be speech actions (i.e. verbal actions), as
well as co-verbal facial expression actions, or co-verbal manual ges-
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(a)

(b)

Figure 1. (a) Software realization of a vocal tract plant comprising lips, tongue, velum, upper and lower jaw, pharyngeal wall, and larynx, for a speaker of Standard
German (Birkholz and Kröger 2006) and (b) a control scheme for articulator movements (i.e. speech action score) realizing the German word “Tomate”.
From top: phonetic transcription, oscillogram, spectrogram, time scale in seconds, and articulator movement trajectories for tongue height, lip aperture,
tongue tip height, velopharyngeal aperture, glottal aperture, vocal cord tension, and lung pressure. Activation intervals of vocal tract actions are marked as
light gray boxes: three vocalic actions, one labial and two apical (tongue tip) closing actions, one velopharyngeal opening action, three glottal opening and
two phonatory (modal) actions, and actions for adjusting fundamental frequency and lung pressure occur; articulatory movement trajectories are calculated
using the dynamic model introduced by Birkholz et al. (in press).

tures. Thus, three articulatory domains are important in face-to-face
speech communication, i.e. the vocal tract domain comprising the
oral, nasal, velopharyngeal, and laryngeal region with its articulators
(e.g. lips, lower jaw, tongue, velum, glottis) in order to produce an
acoustic speech signal, the facial domain comprising the eye region,
cheeks, mouth and chin etc. for producing co-verbal facial expressions,
and the manual domain comprising arms, hands, and fingers in order
to produce co-verbal gesturing (Kröger and Kopp et al. 2010).

Moreover three perceptual domains can be diɼerentiated, i.e. the
auditory, the visual, and the somatosensory domain. While articulator
movements of the vocal tract domain are mainly perceived in the audi-
tory domain (since it is the goal of these movements to produce dis-
tinct acoustic signals), articulatory movements of the facial and manual

domain (i.e. movements of the eye brows, eyelids, cheeks etc., or of
the arms, hands, and fingers) are perceived in the visual domain. Vo-
cal tract actions at least of the lips, the lower jaw and the anterior part of
the tongue can be perceived in the visual domain as well (e.g. “lip read-
ing”) and this kind of visual speech perception influences overall speech
perception (see “McGurk-eɼect”, McGurk and MacDonald 1976). But
auditory perception is clearly dominant in the case of speech, since ver-
bal communication can be performed successfully by exclusively using
the auditory signal path without including the visual path (e.g. conver-
sation by telephone) but not vice versa.

Conversational agents or robots mainly use the acoustic and auditory
domain for modeling speech production and perception without intro-
ducing articulation, i.e. modeling of vocal tract articulator movements,
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while in the case of co-verbal manual and facial actions, production al-
ways implies modeling the generation of movements and perception
always implies the visual analysis of movements or at least of spa-
tial visible target configurations resulting from movements. It is a main
idea of our approach to understand the acoustic speech signal as a
signal which results from the movement of articulators (Fig. 1), in the
same way as the visual signals occurring in the co-verbal facial and
manual domain result from facial and manual articulator movements
(see the unified theory for verbal and co-verbal communicative actions
introduced by Kröger and Kopp et al. 2010). It will be shown in this pa-
per that an articulation-based interpretation of speech production
and perception – in parallel to themovement-based production and per-
ception of manual and facial actions – is an essential and indispensable
feature of any biological plausible model of speech communication.

Last but not least it is important to mention the somatosensory do-
main as the perceptual domain for monitoring the execution of actions
produced by the robot or actor itself in each articulatory domain. This
monitoring comprises tactile sensation (e.g. lips, hard palate in the case
of speech articulation) as well as proprioceptive sensation; e.g. sensa-
tion of muscular tension for example in order to perceive the positioning
of the tongue or sensation of degree of joint bending for example in the
case of the lower jaw. On the one hand in the case of speech actions
(i.e. vocal tract actions) it is well known that – beside auditory feedback
– somatosensory feedback is important for controlling speech articula-
tion (Golfinopoulos et al. 2011). On the other hand manual actions are
controlled by somatosensory as well as by visual feedback (i.e. visual
perception of the movements of the actors own hands and fingers) dur-
ing their acquisition process (Iverson et al. 1999, Saunders and Knill
2004, Desmurget and Grafton 2000) while later on manual actions are
mainly controlled by somatosensory feedback in face-to-face commu-
nication processes.

3. Self-organization and associative learn-
ing as basic principles

Associative and self-organizing neural network approaches are biologi-
cally plausible for controlling human behavior, but not yet implemented
successfully in either humanoid robots or artificial agents involved in
human-machine communication. Nevertheless, in this paper it will be
argued that associative and self-organizing neural network approaches
should be used, because these approaches are closely related to the
biologically realistic functional processes occurring in the human brain
(Thompson 1986, Kohonen 2001, Grossberg 2010) and thus poten-
tially allow a high degree of naturalness in controlling communication
processes.

A control module can be called an associative control module, if two
conditions apply. (i) Stimulus exposure during learning is dual and syn-
chronous. That is the case, if for example an auditory and a visual stim-
ulus are exposed synchronously to the robot or toddler as is the case
in specific word learning scenarios (Plebe et al. 2010, Goldstein et al.
2010), or if a motor pattern of an action and the sensory pattern, which
results from the execution of that action, are exposed synchronously to
the robot or toddler, as is the case in babbling training (Guenther et al.
2006, Kröger et al. 2009). (ii) An associative learning rule must gov-
ern the learning process, resulting in successful co-activation e.g. of
an auditory (word) pattern if the visual pattern of an object is activated
(Plebe et al. 2010) or e.g. of motor-patterns if an appropriate percep-
tual stimulus is activated (Kröger et al. 2009). Associative learning has
been demonstrated to be a main biological principle for behavior learn-

ing (Mitchell et al. 2009) and is assumed as a basic principle especially
in combined sub-symbolic and symbolic processing (Haikonen 2009).

A controller can be called self-organizing control module, if (i) there
exist no predefined hardwired control rules, and (ii) if learning is un-
supervised and learning results in adaptive behavior. A main feature
of self-organizing control modules is that they reflect an ordering and
categorization of behavior (e.g. speech, manual or facial actions) with
respect to the main features which describe the variety of the behavior
in each domain; e.g. phonetic features in the case of speech (Kröger et
al. 2009) or movement primitives in the case of hand-arm actions (Tani
et al. 2008, Tani and Ito 2003). A second feature of a self-organizing
control module is that the representation of knowledge for a group of
similar behaviors is larger the stronger the module is exposed to this
group of stimuli during training. Both features of self-organization oc-
cur in human brains (Trappenberg et al. 2009, Grossberg 2010).

In communication processes as well as in many other behavioral pro-
cesses it is important to subdivide cognitive and sensorimotor process-
ing. Cognitive processing mainly acts on symbolic items (e.g. se-
mantic concepts or phonological descriptions of words) while sensory
and motor processing mainly acts on sub-symbolic items like mo-
tor or movement patterns or like visual, auditory, or somatosensory pat-
terns. An associative and self-organizing control approach can be used
in order to model sub-symbolic (i.e. sensory and motor) as well as
symbolic (i.e. cognitive) processing; see Haikonen (2009) for a general
discussion of symbolic and sub-symbolic processing and see Kröger
and Kopp et al. (2010) for the unification of sub-symbolic and sym-
bolic representations in communicative actions. In the next chapter,
typical architectures of communicative agents or robots are described.
All these architectures in principle can be implemented by using asso-
ciative, adaptive, and self-organizing neural network approaches.

4. Autonomous communicative robots and
their control: the state of the art

Face-to-face communication needs two autonomous subjects (e.g. an
agent or robot and a human) capable of interacting with each other.
This does not necessarily mean that these subjects have available a
common language. For example two persons with diɼerent language
backgrounds are capable of communicating and are capable of ex-
changing informationmore or less successful by nonverbal actions (e.g.
facial expressions and manual gestures). Steels (2003) reports that
two autonomous agents, each equipped with a cognitive system (i.e. a
system processing symbolic information), with a sensory system (i.e. a
system perceiving and processing sensory information, e.g. visual in-
formation concerning objects occurring within the robot's environment),
and with a motor system (i.e. a system for performing actions by us-
ing the robot's eɼectors; e.g. head, arms, hands, fingers) are capable
of developing a shared communication system. But the “evolving” lan-
guage is not necessarily as complex as human languages are. Since
the coded information can be communicated from robot to robot only by
the eɼectors the robots have available, the kind of embodiment deter-
mines the “phonetics” of the evolving language: For example communi-
cation can be performed by eye- (or camera-) pointing to objects or by
using specific gestures (see also Cangelosi and Riga 2006, Galantucci
and Steels 2008).

Parisi (2010) suggests a human robot model comprising a linguistic and
a non-linguistic neural sub-network, each composed of a sensory part,
a motor part, and an intermediate layer for processing internal units
(i.e. a cognitive part). In the case of the non-linguistic sub-network, the
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sensory part is capable of processing visual information (e.g. objects
in the robot's environment) and the motor part is capable of accom-
plishing actions using its eɼectors (e.g. reaching and/or grasping an
object by using specific eɼectors). In the case of the linguistic sub-
network, the sensory part processes auditory information (e.g. speech
items produced by the robot itself or by another robot or person in the
robot's environment) and themotor part is capable of producing speech
items by using vocal tract eɼectors (phono-articulatory organs). If the
linguistic sub-network is activated the robot initially generates random
movements of the vocal tract eɼectors, perceives the acoustic results
of his own productions, and learns sensorimotor relations on the basis
of these sensorimotor data (i.e. babbling; see also Kröger et al. 2009).
In a second step the robot is capable of imitating speech items pro-
duced by another robot or by a “caretaker” or “robot-sitter” like a baby
tries to imitate its caretaker�s words and utterances. A comparable be-
havior result from activity of the non-linguistic sub-network: During a
“motor babbling” period, the robot is capable of learning sensorimotor
relations concerning the robot's body eɼector system as a basis for
later perceiving or performing specific bodily actions (reaching, grasp-
ing etc; see also Demiris and Dearden 2005, Caligiore et al. 2008,
Schaal 1999). Moreover Parisi (2010) discusses potential connections
between the cognitive parts of both sub-networks and emphasizes that
the occurring associations between the non-linguistic and lin-
guistic cognitive sub-networks can be interpreted as a basis for lin-
guistic comprehension (i.e. identifying the meaning of an utterance with
respect to the linguistic and environmental context) as well as for non-
linguistic comprehension (e.g. to comprehend an action or gestures or
e.g. to notice the arrangement of an ensemble of objects).

Madden et al. (2009) describes a hybrid comprehension model com-
prising three core modules: a situated simulation module for inter-
nally simulating and representing action sequences up to shared plans
for coordinated actions of two or more actors, a sensorimotor front-
end module (perception/action module), and a cognitive module for
processing non-linguistic as well as linguistic intentions, e.g. action
planning/comprehension as well as utterance planning/comprehension
(predicate-argument module). The important feature of this approach is
the situated simulation module, which connects the cognitive symbolic
and the sensorimotor modules within the model. This module can be
activated from both sides, i.e. from the sensorimotor side for accom-
plishing the perception as well as the production of specific action se-
quences or from the cognitive part in order to concretize intentions (i.e.
to produce actions or action sequences) or to comprehend external
events (i.e. external situations as well as external speech).

While the robot control approaches introduced above more generally
cope with production and comprehension of communicative ac-
tions and language, the importance of face-to-face interaction as a
basic vehicle for human communication in general (Grossmann et al.
2008) as well as for language performance and language learning in
particular (Tomasello 2000, Dohen et al. 2010) guides us now to a
discussion of front-end systems which can be called conversational
or communicative robots or agents, which are especially designed
for face-to-face communication (e.g. Kopp et al. 2005, Bailly et al.
2010). These robots or agents can be seen as a sub-group of hu-
manoid robots (examples for autonomous humanoid robots not spe-
cialized in face-to-face communication but dealing with human-robot
interaction are given by Kanda et al. 2004 and Kanda et al. 2008, and
by Kosuge and Hirata 2004). A main feature of face-to-face commu-
nicative robots or agents is their ability of mutual facial gazing including
production and perception of facial expressions, of head gestures, and
of eye movements (e.g. Rich et al. 2010, Sidner et al. 2005). Facial ex-
pressions, head, body and manual gestures, eye-movements, etc. can
also be called backchanneling signals, if these signals are produced by

the interlocutor (e.g. Ogawa and Watanabe 2000, Fujie et al. 2004).
These speaker-listener signals are important for regulating the ongoing
dialogue for example in order to signal the degree of engagement or
cooperative behavior (Rich et al. 2010, Kanda et al. 2007), to regulate
turn taking (Yoshikawa et al. 2006, Shiwa et al. 2008) and last but not
least to monitor the current emotional state of speaker or listener (e.g.
via diɼerences in facial expressions, e.g. Hashimoto et al. 2010, Sh-
iomi et al. 2004). At least sociable agents or sociable robots includ-
ing cognitive and emotional control systems have been postulated and
constructed in order to provide face-to-face communicative robots not
just with cognitive but as well with social and emotional competence in
order to make them appear as a socially and emotionally better under-
standable and predictable interlocutor in human-robot communication
scenarios (Brooks et al. 1999, Breazeal 2003 and 2004, Bergman and
Kopp 2009, Kopp et al. 2009).

Themain problem for establishing a humanoid robot specialized in face-
to-face communication is to provide the robot with typical human-like
control knowledge. Thus the problem of establishing humanoid com-
munication robots is tightly connected with solving the problem of mod-
eling the autonomous development of the mental system, i.e. solv-
ing the problem of developing behavior as well as of developing in-
ternal mental representations on the basis of ongoing lifelong learning
(Weng et al. 2001, Prince and Demiris 2003, Weng 2004). It is widely
accepted that the physical brain and body structure as well as a
specific intrinsic developmental program is predefined (genetically
defined). A main goal of developmental robotics is to stimulate lifelong
learning from this intrinsic developmental program. The resulting (life-
long) training “events” should not be predefined in detail by this intrinsic
developmental program but should result from this program as well as
from the not necessarily full predictable interaction of the robot with its
environment; at least the learning subject or robot should be capable
of stimulating the occurrence of specific learning situations (Lindblom
and Ziemke 2003, Asada et al. 2009).

Focusing on speech acquisition a major problem of current develop-
mental robotics is that – even while the importance of sensorimotor
interaction of the robot with its environment and even while the impor-
tance of embodiment is widely accepted – most robot architectures –
even if they are used for research in developmental robotics of speech
acquisition (e.g. Brandl 2009, Vaz et al. 2009) – just comprise an
acoustically based but not an articulation based speech production and
speech perception approach. First robotic vocal tract realizations are
already existing (e.g. Fukui et al. 2005) but no attempts have been
done to date in order to use these robots in the field of developmen-
tal robots for speech acquisition. Since the embodiment of the vocal
tract apparatus is very important e.g. for human sensorimotor explo-
rations occurring during speech acquisition (Kröger et al. 2009) as well
as for natural modeling of speech production (Guenther et al. 2006,
Golfinopoulos et al. 2011) and speech perception (e.g. Hickok and
Poeppel 2007), it is the goal of this paper to develop a feasible brain
model (chapter 5) and a hypothetical face-to-face communication train-
ing scenario (chapter 6) capable for modeling speech acquisition within
the paradigm of developmental robotics.

5. A blueprint for a robot’s speech process-
ing “brain structure”

A brain model for speech communication should comprise lower-level
processing routines for the articulation and for the perception of
speech as well as some basic higher-level routines for the comprehen-

4



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

PALADYN Journal of Behavioral Robotics

Figure 2. Blueprint of a brain model for speech production, speech perception, and speech acquisition. Light blue boxes indicate processing modules, dark blue
boxes indicate self-organizing maps (S-Map and P-Map) or neural state maps (semantic, phonemic, auditory, somatosensory, motor plan state map); see
text.

sion of a perceived utterance as well as for the production (i.e. con-
ceptualization and formulation) of speech. A feasible interface between
higher-level and lower-level processing is the phonological represen-
tation of a word or utterance. During a production task the activation of
a phonological representation follows lexical item activation, i.e. lexical
retrieval, lexical selection, and syntactic processing (Lau et al. 2008)
and thus can be seen as the result of conceptualization and formulation
(Levelt et al. 1999, Indefrey and Levelt 2004). During a comprehen-
sion task the activation of a phonological representation directly follows
domain-specific processing of input information, mainly auditory infor-
mation in the case of speech. In the case of auditory speech input these
activation patterns can follow the ventral or dorsal route of speech per-
ception (Hickok and Poeppel 2007). The description of a lemma level
(i.e. a level for syntactic markers, Levelt et al. 1999) and syntactic
processing is beyond the scope of this paper.

A blueprint of a brain model for speech processing following these ideas
is given in Fig. 2. Here, processing of symbolic states (i.e. states which
can be represented by symbols; e.g. phonological or semantic states)
occurs near the language specific symbolic knowledge repository, i.e.
the mental lexicon. A crucial part of the mental lexicon is its central
self-organizing map, i.e. its semantic map (S-Map). This map is
interconnected in a bidirectional way with a domain-specific state map,
here with the semantic state map (note that the semantic state map
and the semantic map are diɼerent neural maps, Fig. 2). In the case of
a non-abstract object (e.g. a visible object like a dog) or a non-abstract
action (e.g. a visible action like walking) the semantic state map is

capable of representing symbolic information stemming from diɼerent
domain- or mode-specific areas, i.e. from sensory areas like the visual
areal, processing its visual form, color of its coat, like the somatosen-
sory areal, processing the impressions concerning the tactile feedback
during fingering its coat, like the olfactory areal, processing its smell,
and like the auditory areal, processing its barking and yowling, as well
as from motor areas, which together with visual areas process move-
ment. The phonemic state map, also appearing at the level of the
mental lexicon (Fig. 2), is capable of representing language specific
symbolic phonological information concerning the word; e.g. number
of syllables, structure of each syllable (e.g. how many consonants oc-
cur in the onset and rhyme of the syllable), and phonological features
of each sound within syllable onset and rhyme (e.g. manner and place
of articulation). Following Li et al. (2004) both state maps occurring
at the level of the mental lexicon, i.e. the semantic and the phonemic
state map, are interconnected with two central self-organizing maps,
named semantic map (S-Map) and phonetic map (P-Map). In addition
to Li et al. (2004) the lower-level self-organizing map, i.e. the pho-
netic map, is also interconnected with sub-symbolic motor and sensory
state maps and that this lower part is named action repository (Fig.
2). Consequently, this implies that phonemic states are closely related
to sub-symbolic phonetic motor plan and sensory (i.e. auditory and
somatosensory) states for each lexical item. This organization of the
model is straight forward with respect to findings that lexical items may
be directly encoded with respect to sensory and motor representations
(Coleman 1999, Roy et al. 2008, Aziz-Sadeh and Damasio 2008).

5



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

PALADYN Journal of Behavioral Robotics

While both self-organizing maps (S-Map and P-Map) and the synap-
tic link weights towards the domain-specific state maps (semantic and
phonemic state map as well as motor plan, and sensory maps) are part
of the long-term memory (knowledge repository), the domain-specific
state maps themselves are part of the short-term memory (see be-
low). By activating a specific single state (or neuron), representing a
lexical item (word) within the S-Map and the word's syllables within the
P-MAP, specific and typically complex state (or neural) activation pat-
terns arise within each state map, representing the current phonemic
and/or semantic state of that word and its syllables.

Moreover both self-organizing maps (S-Map and P-Map) are associa-
tively interconnected in a bidirectional way in order to enable an asso-
ciation between semantic, phonological, motor plan and sensory map
activations for each lexical item. Thus production starts with an activa-
tion pattern within the semantic map describing the semantic state of a
lexical item, leading to a local (or single-neuron) co-activation within the
S-Map. Consequently a local co-activation occurs within the P-Map,
leading to a further complex co-activation pattern for the phonemic,
motor plan, auditory and somatosensory states representing the syl-
lables of that lexical item. In contrast, perception and comprehension
starts from an auditory state representation which directly leads to an
activation of a phonemic state (ventral pathway, see Hickok and Poep-
pel 2007). This furthermore leads to a local S-Map co-activation, and
then results in the co-activation of a semantic state within the seman-
tic state map, representing the meaning of a word. If perception takes
place under diɺcult conditions (e.g. noisy environment) the dorsal path-
way may be co-activated as well (ibid.; see also next paragraph). In this
case the auditory state co-activates P-Map states and these P-Map
states co-activate an S-Map state via the bidirectional connection of
both self-organizing maps (Fig. 2).

Processing of sub-symbolic states (i.e. auditory, somatosensory, mo-
tor plan states) arises around the speech specific sensorimotor knowl-
edge repository, called sensorimotor knowledge repository or ac-
tion repository; called mental syllabary in terms of Levelt et al. (1999).
Following Kröger et al. (2009) it can be assumed that the action repos-
itory comprises a central self-organizing map which is called phonetic
map (P-Map). This self-organizing map is assumed to be located in
a hyper- or supramodal brain region (i.e. beyond unimodal brain
regions). But this self-organizing map is interconnected in a bidirec-
tional way with three sub-symbolic unimodal (i.e. domain specific) state
maps, i.e. the auditory state map, the somatosensory state map, and
the motor plan state map, as well as with one symbolic state map, i.e.
the phonemic state map. In parallel to the organization of the men-
tal lexicon, this central self-organizing map and its links towards all
domain-specific state maps are part of the long-term memory (knowl-
edge repository), while the domain-specific state maps themselves are
part of the short-term memory. A local P-Map activation leads to spe-
cific neural activation patterns for auditory, somatosensory, and/or mo-
tor plan states, which arise within the domain-specific state maps. It
can be assumed that the phonemic state representation is related to
the motor plan. Each syllable or word is represented here by a symbolic
description of all vocal tract actions realizing that speech item, i.e. by a
list of distinctive features representing each action. The organization of
each syllable in onset and rhyme and the organization of these syllable
constituents in segments are implicitly given by the temporal organiza-
tion of the speech or vocal tract actions constituting a syllable (Kröger
and Birkholz 2009).

Articulation starts with a local activation within the P-Map which results
from the activation of a lexical item (via the S-Map). This leads to a
co-activation of specific neural activation patterns, representing the au-
ditory state, the somatosensory, and the motor plan state for that syl-
lable or word. The activation of the auditory and somatosensory state

means that the model now “knows” how the auditory result of the artic-
ulation process should sound, and how the articulation of the syllable
or word should feel. Thus these sensory states are also called inner or
internal sensory states and these states are important for monitoring
the syllable articulation as well as the whole word production process.
A typical design for a neural state map representing vocal tract actions
scores (i.e. speech motor plans) is exemplified in Kröger, Birkholz et
al. (2010). A speech motor plan typically represents and specifies
the types of elementary movement actions (e.g. labial, apical, dorsal,
full-closing, near-closing etc.), the duration and velocity (or rapidity) of
each action (Kröger and Birkholz 2007), as well as the timing between
all actions needed in order to build up a syllable or word. Articulation
proceeds from the motor plan state towards a subsequent neuromus-
cular programming and execution of a succession of temporarily over-
lapping vocal tract actions as defined by the motor plan (also called
gestural score or vocal tract action score, Kröger and Birkholz 2007).

Perception starts with peripheral to central processing of sensory sig-
nals by using peripheral sensory organs, i.e. ears, tactile sensors of the
skin, and proprioceptive muscular and joint sensors. It has been shown
that the articulation-perception loop (Fig. 2) is an important vehicle for
learning or training sensorimotor patterns (i.e. actions) by perceiving
and imitating actions produced by others and by monitoring the repro-
duction of these patterns by the model itself (Kröger et al. 2009). The
articulation of an action or of a score of actions representing a whole
syllable or word will be accepted if the comparison between the internal
auditory state already learned from an external speaker and the exter-
nal auditory state produced by the articulation of the model itself (i.e.
resulting from self-perception) is suɺciently small. After that learning or
training period, auditory perception of speech results in a co-activation
of specific neurons of the P-Map. That directly leads to a co-activation
of the phonemic representation of the lexical item and to a co-activation
of its semantic representation via S-Map. Since this waymay in addition
lead to a co-activation of motor plan states via the P-Map, this percep-
tual path is also called the dorsal stream or dorsal pathway (Hickok
and Poeppel 2007). A second more “passive” perceptual pathway is
described in literature, i.e. the ventral stream or ventral pathway
(ibid.), which connects neural auditory representations of an external
speech signal with phonemic representations via the phonological pro-
cessing module (see above).

Last but not least it should be stated that – despite the fact that the
semantic state map represents high level conceptual information – this
information may be located in domain-specific brain areas represent-
ing specific perceptual and/or specific motor imageries concerning that
(non-abstract) object or action. Thus the semantic state map can be
assumed to be widely distributed over diɼerent brain regions (Patter-
son et al. 2007). Moreover it can be assumed that the activation of
concepts represented within the self-organizing S-Map leads to a co-
activation of higher-level as well as lower-level inner or internal sensory
and motor representations which are closely related with these sym-
bolic concepts. This organization of activation is comparable to the
activation of internal auditory and motor state representations of sylla-
bles as initiated by a P-Map activation for speech production, but the
activation of sensory andmotor states resulting from a S-Map activation
co-occurs with many diɼerent kinds of cognitive activities like thinking.

Concerning the processing modules for semantic and phonological
processing it is important to state that these two processing modules
are not just interconnected with the S-Map or P-Map but are also di-
rectly connected with sensory processing modules in the case of the
phonological map (e.g. with auditory processing in the case of the ven-
tral route of speech perception as indicated in Fig. 2 and with visual
processing for reading, not indicated in Fig. 2) and directly connected
with sensory and motor processing modules in the case of semantic
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processing as described above.

It is very important to separate diɼerent state (or neural) activation pat-
terns appearing in the two self-organizing maps introduced above
(i.e. within the long-term memory) from those which appear in the
domain-specific state maps (i.e. within the short-term memory). A
specific state within the long-term memory (i.e. an item which is ac-
tivated within a self-organizing map, e.g. a specific lexical item acti-
vated within the S-Map; a specific syllable, activated within the P-Map)
is represented within these self-organizing maps by a local activa-
tion pattern (i.e. by a single neuron or locally connected neuron clus-
ter). Thus local activation patterns represent specific symbolic states
within the S-Map or supramodal sub-symbolic states within the P-
Map with-in our long term memory. In contrast in the case of state rep-
resentations within unimodal domain-specific state maps (e.g. seman-
tic state, phonemic state, auditory state, somatosensory state, motor
plan state map), on the one hand, each state map comprises an en-
semble of spatially closely connected model neurons (as is also the
case for all self-organizing maps), but on the other hand the activation
pattern for a unimodal domain-specific state is spatially distributed
over the whole cortical region defined by that domain-specific
state map. Thus the representation or activation pattern of a motor
plan state within the motor plan state map can be assumed to be a
direct representation of an action score (Fig. 1). The neural represen-
tation or neural activation pattern of an auditory state within the au-
ditory state map can be assumed to be a direct representation of an
acoustic spectrogram, where one dimension represents bark scaled
frequency and the other dimension represents time. In a compara-
ble way the neural representation or neural activation pattern of a so-
matosensory state within the somatosensory state map should com-
prise a two-dimensional “cast” of the tactile pattern – where one di-
mension represents diɼerent oral regions (labial, palatal, velar, apical,
pre- and postdorsal) and where the second dimension represents the
time – and a “cast” of the proprioceptive pattern of diɼerent muscles
and joints of lips, tongue tip, tongue body, and lower jaw. The knowl-
edge of how to activate these domain-specific neural states is stored
in the long term memory, i.e. within the links connecting specific loci of
a self-organizing map (S-Map or P-Map) with a whole domain-specific
state map, while the domain-specific activation patterns only arise for a
short time window within each domain-specific neural state map. Thus,
the domain-specific patterns can be activated internally from specific
loci of the self-organizing maps or externally from a domain-specific
(external) sensory excitation (Fig. 2).

6. Training the brain: knowledge acquisi-
tion

While a blueprint for the structure of a control module has been out-
lined above, it is the goal of this chapter to describe how speech knowl-
edge could be acquired, i.e. how the knowledge repositories emerge
during speech acquisition. It can be assumed that mainly unsupervised
associative learning takes place here. While sub-symbolic state maps
are “pre-wired” to peripheral processing modules and thus while sub-
symbolic state representations directly result from their domain-specific
peripheral processing (e.g. action score as motor plan representa-
tion, spectrogram as auditory short term representation, see Kröger,
Birkholz et al. 2010), higher-level neural representations, as occurring
in the supramodal P-Map and in the cognitive S-Map emerge during
learning by principles of self-organization (cf. Dehaene-Lambertz et al.
2008). Simple self-organizing Kohonen networks (Kohonen 2001) can
be used (Kröger et al. 2009), while more complex approaches may

include more neurobiological reality (e.g. recurrent neural network ap-
proaches, e.g. Li et al. 2008). Specific sub-modules within the higher-
level part of the control module (in human analogy: specific cortical
brain regions), i.e. the P-Map and the S-Map are assumed to acquire
the sensorimotor and semantic knowledge, but the detailed emergence
and growth processes of these maps result from (individual) learning.

A basic question for starting modeling speech acquisition is: What is
the driving force for a newborn to learn to speak? One reason may be
that survival is better guaranteed if knowledge for allowing the subject
to participate in communications is acquired; group activities guarantee
survival (Fehr et al. 2002). It is important for each human subject to
become capable to comprehend the intention of others, i.e. the infor-
mation another person wants to communicate and to become capable
to communicate his/her own intentions or messages. Thus it can be
assumed that the will to communicate is innate and this will or driving
force should be manifest in the brain model of communicative robots.
Thus the robot always should be willing to react on a perceived action of
the communication partner by using communicative actions. A further
question is: What is the driving force for being willing to incur the eɼorts
of learning to produce and to comprehend speech? A hypothetical an-
swer is that the newborn in its first communication scenarios with its
caretaker immediately notices that communicative manual gestures (as
well as communicative facial expressions) which are produced by care-
taker (i.e. by the communication partner) are accompanied by acoustic
signals (i.e. by a speech signal). The newborn immediately becomes
aware that the speech signal is a part of the communicative intention
of the caretaker (Tomasello 2000). Thus, early speech acquisition is
closely related to face-to-face communication; e.g. it has been shown
that it is not possible to learn to speak just by passively watching TV;
thus speech acquisition needs communication and communicative in-
teraction (Kuhl 2004). And since speech is produced by movements
of speech organs (vocal tract actions), speech can be acquired by imi-
tation of vocal tract actions of a caretaker occurring during face-to-face
communication in a comparable way as co-verbal manual actions and
co-verbal facial actions are acquired (Özçalışkan and Goldin-Meadow
2005, Rizzolatti 2005).

In the case of speech a relatively complex question is: How is the
toddler capable of segmenting the continuous stream of the acoustic
speech signal, e.g. and utterance as basic speech unit into meaningful
parts (e.g. words)? The only input a child receives is the continuous
auditory signal stream of an utterance beside contextual information
(i.e. concerning the contextual situation of the current communication)
and beside a signal stream of eventually co-occurring manual gestures
(e.g. if the caretaker points on an object) and eventually co-occurring
facial expressions of the communication partner (e.g. a smiling face).
This contextual information as well as the information concerning co-
occurring manual and facial gestures is important: For example the
production of single word utterances (or sentences always starting with
“that is a . . . ”) together with a manual pointing gesture towards a visi-
ble object (e.g. chair, table, window) or together with a manual gesture
of presenting an object by holding it in the hand (e.g. puppet, bottle,
cloth) may be a very helpful communication process for learning non-
abstract nouns; similar learning or acquisition scenarios are described
by Brandl (2009) and Vaz et al. (2009).

In our hypothetical model for speech acquisition two basic learning
phases can be separated, i.e. the babbling and the imitation phase.
During babbling the toddler produces random vocal tract actions lead-
ing to phonation-like states, proto-vocalic, and proto-syllabic states,
e.g. like [bababa], see Kröger et al. (2009); i.e. during babbling the
toddler produces a series of motor and sensory states which are as-
sociated with each other. Thus, during babbling the sensorimotor part
of the P-Map, i.e. the links between P-Map, motor and sensory state
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maps emerge (Fig. 2). If sensorimotor learning has built-up the P-Map
to a certain degree during babbling, the toddler is capable of starting
to imitate external acoustic signals, e.g. words which are produced
by communication partners (e.g. the caretaker). This is possible now,
since the toddler already has trained elementary sensory-to-motor rela-
tions. This imitation training leads to a further development of the sen-
sorimotor part of the P-Map but now in addition associations emerge
between P-Map and the S-Map representing the semantic states of the
word.

Thus imitation training of a communicative robot should start with train-
ing of non-abstract nouns, which are presented to the robot via a tri-
adic face-to-face communication event, i.e. the caretaker points to
or holds an object in his hand and says “puppet”, while the robot or
toddler understands the communicative intention of the caretaker and
looks at the object and tries to imitate the words and says e.g. [pu:pu:].
This naming may be rewarded by the caretaker by a smile accompa-
nied by a second utterance: “Yes, a puppet”. Thus during this imitation
training the robot or toddler learns to associate the acoustic realization,
the motor realization, and the semantic feature description of a word.
This kind of speech acquisition training should be done for all words
needed in the communication scenarios, the robot is designed for.

Babbling and imitation training results in the emergence of the (self-
organized) S-Map, representing the trained lexical items on a semantic
level, capable of co-activating the semantic states (i.e. the set of se-
mantic features) representing these words or lexical items, as well as
in the emergence of a language-specific P-Map, representing all sylla-
bles of these lexical items. A neuron activation within the P-Map leads
to co-activation of motor plan states, of somatosensory states, and of
auditory states for each syllable. Furthermore it can be shown that bab-
bling allows the association of sensory and motor information of proto-
syllables and that babbling leads to an ordering of these proto-syllables
with respect to supramodal phonetic features. This is exemplified for
vocalic features like “front-back” and “high-low” (Kröger et al. 2009) and
for consonantal features like “place of articulation” in the case of voices
plosives (ibid.). But in the same way during babbling training any other
phonetic feature (i.e. any other phonetic dimension) can be learned
(e.g. voicing vs. voiceless, place and manner for fricatives, etc.). Thus
a phonetic ordering is established in already in the prelinguistic versions
of the P-Map, which are trained during babbling training (ibid.). It is also
exemplified in our preliminary modeling experiments (ibid.) that cate-
gorization takes place on the supramodal phonetic space within the P-
Map if subsequently language specific training (imitation training) takes
place (ibid.). Phonemic categorization processes over phonetic di-
mensions are also postulated in exemplar theory (Pierrehumbert 2003).

For a complete babbling training, diɼerent sets of training items should
be defined reflecting the naturally occurring babbling processes. These
babbling training sets should be capable of elucidating the relationship
between (i) motor plan and somatosensory states, reflecting the articu-
lation and (ii) auditory states, reflecting the acoustic signal which results
from articulating a specific motor plan. Diɼerent training sets need to
be built for emerging the phonetic dimensions or contrasts within the
P-Map: (i) a proto-vocalic training set for emerging the phonetic di-
mensions front-back, high-low, and rounded-unrounded (Kröger et al.
2009), (ii) a proto-place training set for emerging the phonetic dimen-
sion place of articulation (e.g. labial, apical, dorsal, Kröger et al. 2009),
(iii) a proto-constriction training set for emerging the phonetic dimen-
sion manner of articulation (e.g. full closure, critical closure, central
closure with lateral opening, approximant closure), (iv) a proto-voicing
training set for emerging the phonetic dimension voiced-voiceless, (v)
a proto-velopharyngeal training set for emerging the phonetic dimen-
sion nasal-oral. The resulting self-organizing pre-linguistic P-Map is the
basis for imitation and thus for learning lexical items. Now the question

concerning a further segmentation of the acoustic signal beyond words
(i.e. with respect to speech sounds) and concerning the emergence of
phonemic categories during imitation training can be answered. Dur-
ing babbling as well as during imitation training, specific portions of the
acoustic signal can be associated with specific vocal tract actions; e.g.
an acoustic signal gap and the preceding and following formant transi-
tions can be associated with a labial and/or dorsal closing action (e.g.
in “pin” vs. “kin” as well as in “pin” vs. “nip”). This allows the categoriza-
tion of segments, e.g. as labial or dorsal, as well as to identify segment
boundaries, e.g. the acoustic realization of a syllable-initial and syllable-
final /p/ as in “pin” vs. “nip”. Together with the awareness that diɼerent
words represent diɼerent concepts (i.e. the association towards the S-
Map), this allows an assembly of the phonological system of the target
language under acquisition.

7. Discussion

A blueprint for a biologically plausible “brain model” for communicative
robots or communicative agents as well as for the organization of basic
behavioral scenarios for acquisition of speech knowledge were outlined
in this paper on the basis of current literature. It has been illustrated
that natural speech acquisition mainly results from learning during face-
to-face communication situations. Moreover it has been argued that
learning to speak is based on human-robot face-to-face communica-
tion situations, where the human acts like a caretaker or teacher and
where the robot acts like a speech-acquiring toddler. This is assumed
to be a fruitful basic scenario not only for learning to speak, but also for
learning to communicate including the acquisition of co-verbal manual
gestures, the acquisition of co-verbal facial expressions, as well as to
learn to guide or to participate in more complex face-to-face commu-
nication processes. A blueprint for a brain model introduced here has
been outlined in particular for speech (i.e. vocal tract actions), but can
be generalized in a straightforward way for processing manual and fa-
cial communicative actions. The control module comprising the mental
lexicon can be interpreted as a word lexicon, but also as a gesture
lexicon (e.g. Kipp et al. 2007) or as a lexicon for facial expressions
(Pelachaud and Poggi 2002), while the sensorimotor action repository
can be interpreted as a vocal tract, manual, or facial action repository;
see also the unified approach for communicative actions described by
Kröger and Kopp et al. (2010).

It is beyond the scope of this paper to describe the acquisition of gen-
eral communication behavior like how to guide or how to act and react
within a complex face-to-face communication process, i.e. how to ini-
tiate complex utterances accompanied by manual gesturing and facial
expressions and how to react on actions if produced by the interlocu-
tor. But it has been illustrated that basic face-to-face communication
scenarios – as they occur between a toddler and the caretaker – are
initial scenarios for learning this general communication behavior. Thus
a main hypothesis of this paper is that “natural” robot-human face-to-
face communication only can emerge if a robot undergoes basic face-
to-face communication processes as they occur with toddlers and their
caretakers.

Visual recognition and identification of objects (e.g. a puppet) is an es-
sential process during speech acquisition in order to label objects se-
mantically (e.g. to assign semantic features like: has a face, arms, legs,
can walk, feels cuddly, looks like a human but smaller, etc.); but these
topics are beyond the scope of this paper and have already been ad-
dressed and partly solved in other research groups (e.g. Li et al. 2004,
Plebe et al. 2010). Furthermore it is unclear whether neural network
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approaches are themost suited approaches for controlling communica-
tive robots, but in seems at least reasonable to organize the control
module of these robots in a brain-like manner in order to be capable
of using associative unsupervised learning which directly leads to an
organization of that knowledge in a self-organizing and adaptive way.

At least three processing modes of the robot can be postulated: train-
ing, production, and perception. And these three modes are intercon-
nected with each other: On the one hand the description of training
as given above indicates that training starts with perception and needs
production as a part of the babbling and imitation process. On the other
hand, each perception and production process over lifetime leads to
new “input” and thus can be used for further learning. Furthermore the
detailed description of the imitation training scenario given above indi-
cates that imitation may be rewarded in the case of a proper imitation
of a word. Thus imitation training can be seen as reinforcement training
or as a training in which the training may be partly guided by the care-
taker. A second type of “guidance” occurs in babbling training. Since
it is not eɺcient to babble all possible motor plan constellations, which
at least causes an unlimited training set, and since babbling phase and
imitation phase overlap in time during speech acquisition, babbling can
profit from imitation in a way that babbling prefers motor items which
are similar to target language specific motor patterns. Thus babbling
more and more becomes language specific within the first year of life-
time (Goldstein and Schwade 2008, Kuhl 2004).

It is an important feature of the hypothetical brain model introduced here
to separate lower-level and higher-level processing. Higher-level cogni-
tive processes are stimulated by internal or inner representations (im-
agery) of percepts or actions (i.e. lower-level inner representations) and
mainly process symbolic representations, which are associated with
these sensory or motor imageries and which represent the meaning of
these lower-level representations (Haikonen 2009, p.46ɼ). These sym-
bolic representations are eɼective processing units since symbolic rep-
resentations are more “compressed”; i.e. only a brief representation is
needed to be activated in the case of symbolic states in comparison to
perceptual or motor representations. Thus higher-level symbolic repre-
sentations can be labeled as “compressed” or brief representations and
these representations disburden the brain and allow a widening of the
time window for conceptualization and planning of complete sentences
or utterances, since the capacity of the short-term working memory is
limited. While a temporal processing interval on the sensorimotor level
comprises only few syllables, the temporal processing interval on the
semantic level comprises complete sentences or utterances (for a dis-
cussion of diɼerent time scales in cortical and subcortical processing
see Kiebel et al. 2008).

Last but not least it will be shown that the blueprint of a brain model
introduced in this paper (Fig. 2) is well motivated from a neurobiologi-
cal viewpoint, since all modules and maps defined in this hypothetical
model can be located anatomically in real brains. Starting with articu-
lation, the motor plan map – hosting neural presentations of currently
active motor plan states – is assumed to be located in the premotor cor-
tex and/or in the supplementary motor area SMA (Riecker et al. 2005).
Neuromuscular programming is assumed to be hosted here as well
as in subcortical structures (e.g. cerebellum, parts of the basal ganglia,
ibid.). Execution starts on the level of the primary motor cortex and pro-
ceeds via subcortical structures towards the peripheral neuromuscular
units directly controlling the movements of the vocal tract articulators.
Somatosensory processing starts at tactile and proprioceptive recep-
tor cells within the vocal tract and proceeds via subcortical structures
(e.g. thalamus) towards primary and higher unimodal somatosensory
cortical regions which are located in the anterior inferior parietal lobe
(Kandel et al. 2000). Auditory processing starts at auditory receptor
cells within the inner ear and proceeds via subcortical structures (e.g.

thalamus) towards primary and higher unimodal unilateral auditory cor-
tical regions which are located in the dorsal superior temporal gyrus
(ibid.). While the motor plan state map is located in the premotor and/or
supplementary motor area of the frontal lobe, the somatosensory state
maps for processing internal as well as external somatosensory states
are located in the anterior inferior parietal lobe (i.e. a part of the pari-
etal lobe) and the auditory state maps for processing internal as well
as external auditory states are located in the dorsal superior temporal
gyrus (i.e. a part of the temporal lobe). Thus it can be seen that these
unimodal domain-specific state maps which are related to the motor
and diɼerent sensory domains are well separated in the brain in three
of four diɼerent cortical lobes; moreover visual state maps are located
in the fourth, i.e. in the occipital lobe.

The anatomical location of the neural maps and processing modules
representing higher-level symbolic or cognitive states is less specific.
It can be stated that the phonological processing module as well as
the phonemic state map is located bilaterally in the mid-post superior
temporal gyrus (mid-post STS, Hickok and Poeppel 2007) while the
hyper- or supramodal P-Map is assumed to be located in the posterior
middle and inferior portions of both temporal lobes with a weak left-
hemisphere bias (i.e. lexical interface, ibid.). The semantic state map
as well as the semantic processing module represent a neural network
which is widely distributed over the whole cerebral cortex, including the
anterior temporal cortex (basic combinatorics and semantic integration
with context, Lau et al. 2008) and including anterior and posterior por-
tions of the inferior frontal cortex for controlled retrieval and selection
of lexical items (ibid.). The S-Map which connects all domain-specific
sensory and motor semantic state representations (semantic map) can
be compared to a supramodal semantic hub, which is assumed to be
located in the anterior temporal lobes (Patterson et al. 2007).

It is the main goal of this paper to inspire robot constructing engineers
to develop control modules as well as to design the learning or training
scenarios for future exemplars of humanoid face-to-face communica-
tion robots in the way that is described in this paper. Modeling not only
the visual shape of a robot in a human-like way, but also its control
structures as well as its knowledge acquisition as natural as possible,
may in principle overcome theoretical and practical limits occurring for
naturalness of robot acting and reacting, i.e. limits in action perception
and action recognition as well as limits in action initiation and action
production as they occur in currently available artificial systems which
are not designed with respect to principles of neurobiology.
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