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Abstract

Stroke survivors often suffer from oro-facial impairments,
affecting swallowing function and speech production. Mea-
suring tongue pressure and position intraorally can help
to improve therapy for both symptoms, but space inside
the oral cavity is extremely limited and such devices can
easily be prohibitively large and obstructive if too many
sensors are needed. In this work, we present our efforts
to sense the force of the tongue exerted against the hard
palate and the tongue-palate distance, using only optical
proximity sensors. To explore the feasibility and accuracy
of this approach and to evaluate the selected sensor, we
conducted a study with 10 subjects and measured the sen-
sor’s response to 10 discrete distances ranging from 0mm
to 30mm between tongue and sensor, and to a continuously
increasing tongue force against the sensor from 0.1N to
8N. For distance measurements, an existing in-situ cal-
ibration method was applied and verified that yielded er-
rors of less than 2mm for the estimated distances in nearly
every case. For force measurements, a Bayesian classifica-
tion approach was adopted to map sensor data to two force
regions (below and above a certain boundary value), where
up to 84.1% (average: 71.7 %) of ADC values were classi-
fied correctly within-sample.

1 Introduction

Stroke remains one of the major causes of death world-
wide. Statistically, every sixth person at the age between
55 to 75 suffers a stroke [1]. As three out of four stroke
victims survive, an even bigger number of stroke survivors
remain, most of which are left with various disabilities [2].
Due to the nature of stroke affecting certain motor areas in
the brain, two very common complications are dysphagia
(i.e., the difficulty in swallowing) [3] and dysarthria (the
inability to properly articulate) [4]. Rehabilitation mea-
sures include strengthening [5–7] and articulatory exercises
[4] for the tongue. Strengthening exercises are rather sim-
ple in the sense that the patient simply has to press his or
her tongue against the hard palate and the only concern
is the magnitude of force applied. Articulatory exercises
are more complex, need to be chosen individually and de-
pend on how the patients speech is affected [8]. Although
strength plays a role in proper articulation, there has not
been any evidence that strengthening exercises alone help
to improve acquired speech disorders [9] and as such, ad-
ditional exercises are necessary. Several devices exist that
can measure tongue pressure against the hard palate or
track the tongue position inside the oral cavity. One way to
measure tongue position is to use optical distance sensors
[10–13] and this concept has also been used as an input
modality for so called serious games in therapy [14]. As
dysphagia and dysarthria often coexist, they could poten-
tially be treated simultaneously, however current pressure
sensing devices are unable to track the tongue during ar-

ticulation, and optical devices are not designed to measure
tongue pressure. Our recent results [15] show, however,
that due to the subsurface scattering property of the tongue
tissue (or soft tissue in general), optical pressure sensing
seems possible to a certain extend. Other authors have ex-
ploited this subsurface scattering effect in a similar fashion
but different fields of application to measure pressure opti-
cally [16, 17].

Combining the measurement of both pressure (or force)
and distance using a single sensor type within a single de-
vice is extremely beneficial for intraoral applications, not
only because of the advantages mentioned above for com-
bined therapy, but also because space inside the oral cav-
ity is extremely limited and every sensor saved directly
equates to a less obstructive device for the patient. Using
optical sensors poses several challenges for user-friendly
devices. Most optical proximity sensors measure the in-
tensity of reflected light and as such depend on the surface
reflectance. Since tongue reflectance spectra differ slightly
from person to person, the sensors have to be calibrated.
Preuß et al. [18] developed a calibration technique, where
the measured sensor value at zero distance (with the tongue
held directly against the sensor) is taken to predict the sen-
sor values greater than 0mm in a multiple linear regression
approach, based on distance characteristics from different
subjects. This approach consequently relies on sensor data
from several subjects to effectively train the prediction pa-
rameters.

The intent of this paper is two-fold: Firstly, we wanted
to confirm the proposed method from [18] and its applica-
bility for a different optical sensor (see Section 2.1) with
newly recorded data from a study with 10 subjects, and
secondly present results for optical force measurements for
different tongues along with a first approach to map sensor
values to force levels in a probabilistic manner.

2 Methods

2.1 Sensor

The sensor under test was the optical infrared proximity
sensor sfh7779 (wavelength 940 nm, OSRAM, Munich)
with dimensions 2mm× 4mm× 1.4mm (length×width
× height), 12 bit ADC, adjustable emitter current up to
200mA and an I2C interface. The current was set to the
maximum of 200mA for all measurements to account for
the rather poor reflectance of the tongue. As the emitter
LED was pulsed (200 μs per pulse), the mean current con-
sumption was around 4mA. The sensor was coated with
a thin layer (18 μm) of parylene (Heicks Parylen Coating
GmbH, Geseke), to seal it against saliva, and encapsulated
in silicone to avoid sharp edges (Figure 1b).

2.2 Measurement setup and procedure

The study was conducted with 10 subjects (2 female, 8
male, age 27 to 67). For distance and force measurements,
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Figure 1: (a) Test station for measurements [15], (b) clips
to hold the sensor in place during distance and force mea-
surements, (c) approximate tongue contact point during
force measurements.

our earlier developed test station [15] was used (Figure 1a).
The sensor was placed in a 3D-printed clip (Ultimaker 3,
Figure 1b), which itself was attached to the strain gauge.
A sampling rate of 50Hz was used. For distance measure-
ments, several spacers as in [19] with lengths of {0, 2, 5,
10, 15, 20, 25, 30}mm were magnetically attached one af-
ter another to the sensor clip to provide a fixed distance
between tongue and sensor. Before each use, the sensor
clip, strain gauge, encapsulated sensor and every spacer
were sanitized using Helipur H plus N (BBraun AG, Mel-
sungen) according to the standard protocol. For each dis-
tance measurement, 150 samples were taken and the mean
was calculated. The measurements were force-activated,
i.e., if the subject lost contact to the spacer, the measure-
ments would halt to avoid reading wrong distances. To get
an accurate distance measurement at d = 0 mm without
already applying too much force, the threshold for activa-
tion was set to within a narrow range of 0.1N to 0.2N.
For force measurements, the spacers were removed and
the tongue was directly pressed against the sensor with in-
creasing force over 0.1N to 8N and within a time interval
of around 2 s to 3 s [15]. The point of contact with the sen-
sor was approximately 1 cm from the tongue tip (see Figure
1c). Each subject performed 10 repetitions of increasing
his or her tongue force against the sensor. Measurements
were recorded using a custom Matlab program.

2.3 Distance calibration

For distance calibration, the method proposed in [18] was
used. The basic idea behind this method is that the mea-
sured sensor value (converted to a digital value, i.e., its
ADC value), when the tongue barely touches the sensor,
contains enough information a- bout the general reflectance
behavior of the tongue to estimate the rest of the distance
characteristic of the tongue. Each ADC value xi at dis-
tance di > 0 mm is related to the ADC value x0 at distance
d0 = 0 mm by a second order polynomial:

xi = ai,0+ai,1 ·x0+ai,2 ·x20 (1)

Given a number of tupels {x0,xi}, this results in N equa-
tions (i= 1 . . .N , with N = number of discrete distances)
with the unknown parameters ai = [ai,0,ai,1,ai,2]

T and
can be written in matrix form as xi = X0 · ai, with the
M ×3 matrix X0 = [1,x0,x

2
0] (x0 being a column vector

containing the ADC values at d = 0 mm from all M sub-
ject) and xi as a column vector, containing all measured
ADC values for this specific distance. Solving this yields
the result

ai = (XT
0 ·X0)

−1 ·XT
0 ·xi . (2)

With the calculated parameters ai for every distance di, the
8 distances of each of the ten sets were estimated in ADC
values and converted to millimeter (assuming linear inter-
polation between fixed distances). The calibration tech-
nique was evaluated using leave-one-subject-out cross val-
idation.

2.4 Force measurement

Due to the random nature of subsurface scattering of light
in tissue, mapping ADC values to force values is chal-
lenging and can be almost completely ambiguous in ex-
treme cases (i.e., for ADC values around 400, Figure 5a).
As such, a conventional regression approach that predicts
a force value given a measured sensor value would yield
poor results. However, there exists a general trend that
higher forces do result in higher ADC values. Therefore,
it should at least be possible to find specific force values
(boundaries) that divide the measurements into several in-
tervals or regions. New ADC values could then be clas-
sified/mapped into one of these intervals that they most
likely belong to. In this study, a binary classifier with
two regions was tested. The ADC values were split into
two groups at a chosen force value and the histogram was
computed (with the number of bins k =

√
n, n = number

of samples). The boundary value was then systematically
varied and the overlap between both histograms recalcu-
lated. Because the overlap would tend to be lower when
split close to the minimum and maximum recorded force,
splitting the ADC values was done in an interval of 2N to
6N. The force value that divided the measurements with
minimal overlap was taken as the optimal force boundary.
Figure 2 visualizes this procedure. In the following classi-
fication process, every ADC value was classified as either
above or below this boundary value.
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Figure 2: Showcase of the procedure of splitting data into
two regions with minimal overlap. Left: scatterplot with
boundary value (xb, vertical line). Right: histogram of the
two regions along with a GMM fitted to the data.

To approximate the distribution of ADC values in each

ITG-Fachbericht 282: Speech Communication  10. – 12. Oktober 2018 in Oldenburg

ISBN  978-3-8007-4767-2 ©  VDE VERLAG GMBH  Berlin  Offenbach346



force region with a continuous probability density func-
tion, the histograms were fitted to a Gaussian mixture mo-
del (GMM), using Matlabs fitgmdist() function and choos-
ing the fit with the lowest AIC score. The maximum pos-
sible order was set to 8. Based on the found GMMs and
using Bayes’ theorem, the decision to which class c a new
ADC value yi was assigned to, was based on the maximum
a posteriori probability P (c|yi) as follows:

c∗ = argmax
c

P (yi|c) ·P (c)

P (yi)
= argmax

c
P (yi|c) ·P (c), (3)

where c∗ is the selected class, c ∈ {L,H} and P (yi|c) is
the likelihood of yi given class c. The a priori probabil-
ity P (c) was set to [0.5,0.5]. The classification error was
calculated as

ecl =
Incorrectly classified ADC values

Total number of classified ADC values
·100% . (4)

3 Results

3.1 Distance calibration

Figure 3 shows the boxplots for the out-of-sample distance
error between measured and estimated distances for all di
following cross-validation.

Figure 3: Boxplots of the distance error between prede-
fined (by the spacers) and estimated distance d̂i. Outliers
are marked with a plus (+).

Figure 4 displays two examples of very good (left) and
rather poor (right) distance estimation and reveals the im-
portance of sufficient training data to estimate new dis-
tance characteristics. In the latter case (Figure 4, right),
the ADC value of d0 was significantly higher than any of
the d0 values from other data sets. When left out during
cross-validation, the parameters ai could not reflect this
deviation, as they were trained without this particular d0.
This approximation was also responsible for the three out-
liers for 10, 20 and 25mm in Figure 3. However, if the
shape and magnitude of the distance curve, that had to be
estimated, was sufficiently represented in the training data,
the estimation was very accurate (Figure 4, left).

3.2 Force measurements

Figure 5 shows the recorded force measurement results for
all 10 subjects along with the calculated force boundary
values for minimal overlap, which are also summarized in
Table 1. Figure 6 serves as an example to display the a
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Figure 4: Left: example of a very good distance estima-
tion. Right: example of poor distance estimation due to the
test data not being sufficiently represented in the training
data.

posteriori probabilities for the ADC values and the classi-
fication result (class L or H), using equation (3), for data
set 2. Figure 7 shows the results of the within-sample clas-
sification and labelling of every measured ADC value into
either of the two force regions, exemplary for data set 2, as
well.

data set 1 2 3 4 5 6 7 8 9 10

fb [N] 4.1 5.4 2.01 2.6 4.1 3.84 2.01 2.83 2.69 4.17

ecl[%] 29.5 15.9 23.5 24.5 28.2 20.9 25.9 46.3 28.1 26.4

Table 1: Classification error ecl and force boundary values
fb where the overlap is minimal for every data set 1 to 10.

4 Discussion and Outlook

The results for the proposed distance calibration technique
confirm that this method is very well suited to overcome
differences in tongue reflectance and to accurately predict
the distance characteristics with minimal input data (only
one measurement) for different tongues, given that mea-
sured data is available beforehand, and that the training
data is sufficient. Furthermore, the calibration accuracy
improves as more data is available. This data is, how-
ever, sensor specific and a new sensor with a different light
source or detector would require new measurements. Our
study also showed that the accuracy of measured values (at
a given distance) is quite high, i.e., consecutive measure-
ments of the same distance yield similar results. Similarly,
the general shape of the distance curve and the magnitude
of the sensor values to different distances are within a cer-
tain (predictable) range, i.e., a distance of 15mm will be at
around 90 ADC values (for this sensor) and not suddenly
twice as much. Insufficient generalization of the predic-
tive model as in Figure 4 (right) could furthermore be ad-
dressed by adding a regularization term.

With the spatial heterogeneity of tongue muscle tissue
with respect to its optical properties, force measurements
were much less predictable. Because of the random nature
of scattering processes, a probabilistic approach for force
measurements seems natural and the error rates for the pre-
sented binary classifier show that this type of classification
method can partly counter the enormous variance in the
measurements (except for data set 8, where the error was
only slightly below 50%, which is only marginally better
than guessing).
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Figure 5: Scatterplots of force measurements for subject (data set) 1 to 10, (a) to (j). Vertical lines mark the boundary
value fb that splits the data into two force regions with minimal overlap.
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Figure 6: Results for the a posteriori probabilities of ADC
values coming from either distribution and classification
into class L or H . Exemplary for subject 2.

Since speech therapists are often interested in whether
the patient’s tongue strength has increases over the course
of therapy, relative to his or her starting condition, a bi-
nary classifier is most likely not sufficient to catch subtle
improvements. However, this is only the first step into the
direction of making optical force measurements possible
and several improvements will be addressed in future work
to increase its sensitivity: Instead of splitting the data into
just two regions where overlap is minimal, several regions
could be predefined which would increase the resolution
of the classifier. As for any data driven approach, addi-
tional measurements would also increase the confidence
of the predicted force levels, as they serve as the ground
truth. One could also assume that - due to the general
trend of sensor values increasing with force - the classi-
fied value is more likely to stay within its current class,
rather than to switch to another one. This would make the
a priori probability a parameter for optimization. Further-
more, with actual intraoral tests, the maximum force value
of 8N could turn out to be unnecessarily high (especially
for stroke patients, where tongue strength is already rather
low) which in turn would very likely increase the classifi-
cation accuracy, because the sensor value increase is higher
for lower forces. Pre-processing the sensor data with suit-
able filters could also reduce some of the variance before
classification even starts and will be a major focus in fu-
ture work. Additionally, more insights into the scattering

Force [N]

Lower force region (class L)
Upper force 
region (class H)

fb

Figure 7: Classification results for every measured ADC
value in data set 2. Plus signs (+) mark correctly classi-
fied ADC values into the lower or upper force region, dots
(·) mark incorrectly classified values. The resulting ecl is
15.9 %. Horizontal line: ADC value of the classification
boundary. Vertical line: force boundary value fb.

behavior of tongue tissue is needed to better predict, how
the measurements will behave for certain force levels (sim-
ilar to knowing the general shape of the distance curve in
advance). Lastly, some form of patient specific calibra-
tion process could be necessary to increase the robustness
of force measurements, as the tongue effectively becomes
part of the sensor, and its optical properties vary between
patients.
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